If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2-12n-64=0
a = 1; b = -12; c = -64;
Δ = b2-4ac
Δ = -122-4·1·(-64)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-20}{2*1}=\frac{-8}{2} =-4 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+20}{2*1}=\frac{32}{2} =16 $
| 3x/7+7=8 | | -12=-2x-3-x | | X^2+2x-43=-8 | | 46/3x=16 | | x0.2=-2.6 | | 1+4n-4=2n-8-6-3 | | 4x-10+9x=42 | | (5x+11)^2-300=0 | | 7m+5=25 | | 4(x-1)=2x+10+2x | | p×9=279 | | 9+x=-5+3x | | 5(2x-4)-6(x+4)-3(x-8)=2x-(1-x)-19 | | -45=5(x−2) | | x-5+5=3x-2x | | 6w+4+4w=1 | | 2c+14+15c=-2c-13 | | –2p—4=2 | | −12=4(x−5) | | 46x-2=22x | | 3x-x+8=32 | | Y=-7x^2+126x-571 | | 57x+195=-17(x-4) | | 7x-2+5=10x+3-3x | | 3x+4=-3x+8 | | 5-2(c+6)=-15 | | 2y+3y-10=10 | | 7y27;y=4 | | 28x+8=29x+5 | | 10x²-250=0 | | x+x+3x=36-4 | | 8(x+7)=96 |